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Thermocapillary long waves in a liquid film flow.
Part 1. Low-dimensional formulation
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We consider the dynamics of a thin liquid film falling down a uniformly heated
wall. The heating sets up surface tension gradients that induce thermocapillary
stresses on the free surface, thus affecting the evolution of the film. We model
this thermocapillary flow by using a gradient expansion combined with a Galerkin
projection with polynomial test functions for both velocity and temperature fields.
We obtain equations for the evolution of the velocity and temperature amplitudes
at first- and second-order in the expansion parameter. These equations are fully
compatible close to criticality with the Benney long-wave expansion. Models of
reduced dimensionality for the evolution of the local film thickness, flow rate and
interfacial temperature only, are proposed.

1. Introduction
The formation of waves at the surface of a falling film heated from below can

result from different mechanisms. The first one is the classical long-wave instability
mode of an isothermal falling film first described extensively in the experimental
work by Kapitza & Kapitza (1949) and which will be referred to hereafter as the
hydrodynamic mode. The threshold of this mode and its linear stability properties
were scrutinized by Benjamin (1957). Two additional instability modes have been
found by Goussis & Kelly (1991). Both of them originate from the interfacial stress
generated at the interface by the surface tension gradient. This is the well-known
Marangoni effect (Colinet, Legros & Velarde 2001; Velarde & Zeytounian 2002) and
the associated modes of instability will be referred to as the thermocapillary modes.
The first thermocapillary instability mode was obtained by Pearson (1958) who
analysed the stability of a horizontal layer with a non-deformable free surface, and
is a short-wave mode. The second mode is a long-wave variety and was obtained by
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Scriven & Sternling (1964) who allowed the free surface of a horizontal layer to
deform. However, Sternling & Scriven neglected gravity. The occurrence of this long-
wave instability mode in the presence of gravity was then confirmed by Smith (1966).

Following the terminology adopted by Goussis & Kelly (1991), the hydrodynamic
mode of instability will be referred to as the H-mode whereas the long-wave
thermocapillary mode obtained by Scriven & Sternling and Smith will be denoted
as the S-mode. The short-wave thermocapillary mode described by Pearson is not
relevant in the present study which is devoted to the problem of long-wave instabilities
on the surface of a film falling down a uniformly heated plane.

The large ratio between a typical wavelength of the instability and the average
film thickness allows a gradient expansion of the velocity and temperature fields
and the subsequently obtaining of systems of equations of reduced dimensionality.
In the region where inertia is not important, namely if both Péclet and Reynolds
numbers are of O(1) or smaller, the temperature and velocity fields are slaved to the
kinematics of the free surface and a single evolution equation for the film thickness
h can be derived. This is effectively an extension of Benney’s long-wave expansion
(Benney 1966) (see also the review by Oron, Davis & Bankoff 1997) to non-isothermal
flows and it was done by Joo, Davis & Bankoff (1991) who included, in addition
to thermocapillary effects, evaporation and intermolecular forces. In the absence of
these additional effects, their evolution equation will be referred to hereafter as the
JDB equation.

For isothermal films, Benney’s approach is exact in the limit of small Reynolds
numbers but it breaks down at an O(1) Reynolds number with turning points and
branch multiplicity for the solitary-like wave solutions leading to a non-physical
finite-time blow-up (Pumir, Manneville & Pomeau 1983; Scheid et al. 2005b). The
same is true in the non-isothermal case. This was shown by Kalliadasis et al. (2003a)
who traced the solitary wave solution branch of the JDB equation. Moreover, these
authors adopted an integral-boundary-layer (IBL) approach for the equations of
motion and energy equation. In the isothermal case, this formulation combines the
assumption of a self-similar parabolic velocity profile beneath the film with the
Kármán–Polhausen averaging method in boundary-layer theory. The approach was
first suggested by Kapitza to describe stationary waves and later on extended by
Shkadov and coworkers to non-stationary and three-dimensional films (Kapitza &
Kapitza 1949; Shkadov 1967; Demekhin, Kaplan & Shkadov 1987; Demekhin &
Shkadov 1984). The IBL model does not suffer from the shortcomings of Benney’s
expansion and performs well in the region of moderate Reynolds numbers and without
any singularities for the solitary wave solution branch. For the non-isothermal case,
Zeytounian (1998) derived an IBL model consisting of three equations in terms of the
local film thickness (h), flow rate (q) and mean temperature across the layer. However,
since the coupling between the temperature and velocity fields arises through the
tangential stress balance at the interface, it is more appropriate to choose a weighted
residuals approach for the energy equation that would put the emphasis on the
interfacial temperature (θ) so that points near the interface have a ‘larger weight’
than points near the solid boundary. Such a formulation was proposed by Kalliadasis
et al. (2003a) who adopted a linear test function for the temperature combined with a
weighted residuals approach for the energy equation and obtained a three-equations
model for h, q and θ .

However, despite the success of IBL in the nonlinear regime, it does not predict
very accurately neutral and critical conditions and introduces an error, typically of
the order of 20 %, for the critical Reynolds number. Hence the model suffers from the
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same limitations with as Shkadov IBL model which also does not predict accurately
the behaviour of the film close to criticality. In this case, the discrepancy is simply due
to the velocity profile assumed in the Shkadov method: a self-similar parabolic profile
across the film. Although this profile seems to be in agreement with the experiments
by Alekseenko, Nakoryakov & Pokusaev (1994), and hence does capture most of the
physics, corrections to the profile, known to exist at first order in the film parameter
from the long-wave expansion, are important for an accurate prediction of the linear
instability threshold.

Our purpose here is to overcome the limitations of the model equations derived
by Kalliadasis et al. (2003a). In addition, we wish to introduce the second-order
dissipative effects that are known to determine the amplitude of the front-running
capillary waves in the case of isothermal flows (Ruyer-Quil & Manneville 2000, 2002).
These second-order viscous terms were neglected in the formulation by Kalliadasis
et al. (2003a) but they play an important role in the dispersion of waves for larger
Reynolds numbers and/or smaller Kapitza numbers. The procedure followed here is
effectively an extension of the methodology applied in the case of isothermal flows
by Ruyer-Quil & Manneville (2000, 2002) and is based on a high-order weighted
residuals approach with polynomial expansions for both velocity and temperature
fields. Our investigation consists of two parts. Part 1 is dedicated to the formulation
and derivation of a model which close to criticality is fully compatible with the
long-wave classical expansion at first- and second-order in the film parameter. Hence,
this equation corrects the deficiencies of the IBL approach for the heated falling film
problem.

The paper is organized as follows. The basic equations, formulation and relevant
dimensionless groups are given in § 2. In § 3 we truncate our basic equations to obtain
the so-called ‘boundary-layer’ equations in which the inertia terms in the cross-stream
momentum equation are neglected at first order in the film parameter. Section 4
outlines the weighted residuals approach for both velocity and temperature fields. This
leads to two sets of model equations at first and second order in the film parameter.
However, these equations are complicated and hence not convenient for practical
applications. A procedure is then described in § 5 that enables us to simplify our set
of equations and to formulate models fully compatible with the Benney expansion
up to second order. This approach results in systems of three coupled nonlinear
partial differential equations for the evolution of the local film thickness, flow rate
and interfacial temperature. The final system of evolution equations is obtained in § 6
based on the idea that the second-order inertial terms should be written in a form as
close as possible to the first-order ones in order to ensure convergence of the model
for the widest possible range of parameters. Other formulations and models have
been tested and compared; however, they do not perform as well as the proposed
model (6.6) and they are not presented here for clarity and simplicity and in order
to focus on the case that is ultimately analysed. Finally, a conclusion is offered
in § 7.

In Part 2 (Scheid et al. 2005a) we examine in detail the linear stability properties
of the model derived in Part 1 and in particular we compare its neutral stability
curves with those obtained from the Orr–Sommerfeld eigenvalue problem of the
full Navier–Stokes/energy equations. We then compute nonlinear waves far from
criticality. Particular emphasis is given to solitary waves. We scrutinize the influence
of the thermocapillary effect on the instability and the properties of the solitary waves
and we analyse the effect of Reynolds, Prandtl and Marangoni numbers on the shape
of the waves, flow patterns and temperature distributions in the film.
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Figure 1. Sketch of the profile geometry for a film falling down a uniformly heated plane.
hN is the Nusselt flat film thickness.

2. Problem formulation
We consider a film falling down a uniformly heated inclined plane with inclination

angle β with respect to the horizontal direction. Figure 1 sketches the flow situation.
We introduce a Cartesian coordinate system with x the streamwise coordinate in
the flow direction and y the coordinate normal to the substrate; g denotes the
gravitational acceleration, µ and ρ the dynamic viscosity and density of the liquid,
respectively. The ambient gas phase is air at temperature Ta. The wall is maintained
at temperature Tw (>Ta).

The variation of surface tension with temperature is modelled by the linear
approximation, σ (T ) = σ (T0)−(−dσ/dT )|T0

(T −T0), where the rate dσ/dT |T0
is < 0 for

typical fluids. The reference temperature T0 can be either the interfacial temperature
of the basic state, i.e. the flat film, or the air temperature. The length and time scales
are obtained from the streamwise gravitational acceleration g sin β and the kinematic
viscosity ν =µ/ρ which yields l0 = ν2/3(g sin β)−1/3 and t0 = ν1/3(g sin β)−2/3 so that
the velocity and pressure scales are U0 = l0t

−1
0 = (νg sin β)1/3 and P0 = ρ(νg sin β)2/3.

These scales express the importance of the viscous and gravitational forces in our
system. Here we consider inclined planes for which sin β is of order unity and film
flows of thicknesses hN of the order of the length scale l0. Finally, for the temperature
field we introduce the non-dimensionalization, T̄ = (T − Ta)/(Tw − Ta), so that the
dimensionless wall and air temperatures are T̄ = 1 and T̄ = 0, respectively, where the
bars denote dimensionless variables.

The dimensionless momentum equation then is

∂t u + u · ∇u = −∇p + i − cotβ j + ∇2u, (2.1)

where u and p are the dimensionless velocity and pressure fields, respectively. We
also have the continuity equation

∇ · u = 0, (2.2)

the no-slip boundary condition at the plane

u|y=0 = 0, (2.3)
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the kinematic condition at the free surface

(∂t + u · ∇)(h − y) = 0, (2.4)

where h is the local film thickness, and continuity of stress at the free surface

−pn + 2d · n = −(Γ − MaT )∇ · n − Ma(I − n ⊗ n) · ∇T · (I − n ⊗ n), (2.5)

where the bars used to distinguish between dimensional and dimensionless
temperatures have been dropped. Here n is the outward-pointing normal at the
interface, d = 1

2
(∇u + ∇ut ) and I the identity tensor. Surface tension effects are

measured by the Kapitza number

Γ ≡ σ (Ta)

ρl0
2g sin β

=
σ (Ta)

ρν4/3(g sin β)1/3
,

and the Marangoni number

Ma ≡ Γ
−dσ/dT |T0

(Tw − Ta)

σ (Ta)
=

−dσ/dT |T0
(Tw − Ta)

ρν4/3(g sin β)1/3
.

We also have the energy equation

Pr(∂tT + u · ∇T ) = ∇2T , (2.6)

which is coupled to the hydrodynamic equations through the stress balance in (2.5).
Here Pr = ν/κ denotes the Prandtl number with κ the thermal diffusivity. Our system
is finally completed with the wall boundary condition

T |0 = 1, (2.7)

and Newton’s law of cooling at the interface

−∇T |h · n = Bi T |h, (2.8)

where the Biot number is defined as Bi = q0l0/K with K = ρcpκ the thermal
conductivity of the liquid and cp the constant-pressure heat capacity and with q0

a heat transfer coefficient that describes the rate of heat transport from the liquid to
the ambient gas phase.

Finally, we note that the full system of Navier–Stokes/energy equations and
wall/free-surface boundary conditions in (2.1)–(2.8) has a trivial solution that
corresponds to a flat film of dimensionless thickness hN with a parabolic velocity
distribution and a linear temperature distribution, namely,

u = yhN − 1
2
y2, T = 1 − Bi

1 + BihN

y. (2.9)

3. Boundary-layer equation
We now assume that the typical length of the waves is large in comparison with

the thickness hN of the film so that the slope of the interface ∂xh is always small.
Defining a formal film parameter ε ∼ ∂x, ∂t , we shall investigate slow time and space
modulations of the basic flat-film solution (2.9).

In order to capture dispersion effects induced by streamwise viscous terms that
were seen to play an important role in the isothermal case (Ruyer-Quil & Manneville
2002), we keep terms up to O(ε2) in the derivation process. As in boundary-layer
theory, we neglect the inertial terms in the cross-stream momentum equation and
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by integrating along y we obtain, with the normal stress condition at the interface,
an approximation at O(ε) of the pressure distribution in the liquid and therefore an
approximation at O(ε2) of the pressure gradient in the streamwise direction

∂xp = −∂xxu − ∂x[∂xu|h] + cotβ ∂xh − Γ ∂xxxh, (3.1)

where the continuity condition

∂xu + ∂yv = 0 (3.2)

has been used. It is useful to note that all neglected terms in (3.1) are at least of O(ε3)
but we have kept the main contribution of surface tension which is also formally
of O(ε3). As awkward as it may appear, this ‘inconsistency’ is necessary. Indeed, in
the isothermal case it is this term related to capillary forces that prevents the waves
from breaking. By now substituting equation (3.1) into the streamwise momentum
equation, one obtains

∂tu + u∂xu + v∂yu − (∂yy + 2∂xx)u − 1 + cotβ ∂xh − ∂x[∂xu|h] − Γ ∂xxxh = 0, (3.3)

which will be referred to as the second-order boundary-layer equation. In addition, we
have the two-dimensional energy equation

Pr(∂tT + u∂xT + v∂yT ) = (∂xx + ∂yy)T . (3.4)

Equations (3.2)–(3.4) are completed by the two-dimensional kinematic condition at
the interface (which is exact for all orders)

∂th + u∂xh = v|h, (3.5)

the continuity of the tangential stress truncated at O(ε2)

∂yu|h = 4∂xh∂xu|h − ∂xv|h − Ma[(∂x + ∂xh∂y)T ]|h
= 4∂xh∂xu|h − ∂xv|h − Ma∂x[T |h], (3.6)

the truncated heat balance at the interface

∂yT |h = −Bi
(
1 + 1

2
(∂xh)2

)
T |h + ∂xh∂xT |h, (3.7)

and the Dirichlet conditions at the wall (2.3) and (2.7).

4. Weighted residuals approach
We now apply the polynomial expansion approach developed by Ruyer-Quil &

Manneville (2000) for isothermal films. The basic idea is to separate the variables and
to expand the velocity and temperature fields on a set of test functions depending on
the reduced coordinate ŷ = y/h which is a natural similarity variable as it converts
the boundary-value problem in the interval [0, h] to a problem in [0, 1]. To satisfy the
boundary conditions (2.3) and (2.7) defining the velocity and temperature distributions
at the wall, we write

u(x, y, t) =

imax∑
i=0

ai(x, t)fi(y/h(x, t)), T (x, y, t) = 1 +

imax∑
i=0

bi(x, t)gi(y/h(x, t)), (4.1)

where fi(0) = gi(0) = 0.
It is appropriate to choose polynomial test functions fi, gi for at least two reasons:

(i) our analysis is based on the assumption of slow modulations of the basic-state
solution which corresponds to a parabolic velocity profile and a linear temperature
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distribution, so that it is necessary to introduce the flat-film solution (2.9) into
the expansion; (ii) polynomials form a closed set with respect to differentiations
and products appearing in (3.2)–(3.7). We therefore choose f0 = ŷ − 1

2
ŷ2 and g0 = ŷ

corresponding to the basic state (2.9) and complete the set of test functions with

f1(ŷ) = ŷ, fi(ŷ) = ŷi+1, i � 2 and gi(ŷ) = ŷi+1, i � 1, (4.2)

to obtain the polynomial bases for the projection. Note that the Dirichlet conditions
(2.3) and (2.7) are then automatically satisfied.

Since 2imax + 3 unknowns have been introduced, namely h, ai and bi , 2imax + 3
equations should be written to determine them. The first one is the kinematic condition
at the interface (3.5) which can be replaced by integrating the continuity equation
(3.2) along the normal coordinate to give

∂th + ∂xq = 0, (4.3)

where q =
∫ h

0
u dy is the flow rate in the streamwise direction. Two additional

equations are the boundary conditions (3.6)–(3.7). Defining 2imax weight functions
wj (ŷ), the final equations and closure are obtained by the vanishing residuals

Rq(wj ) ≡
∫ h

0

wj (ŷ)[∂tu + u∂xu + v∂yu − (∂yy + 2∂xx)u

− 1 + cot β ∂xh − ∂x[∂xu|h] − Γ ∂xxxh] dy = 0, (4.4a)

RT

(
wimax+j

)
≡

∫ h

0

wimax+j (ŷ)[Pr(∂tT + u∂xT + v∂yT ) − (∂xx + ∂yy)T ]dy = 0, (4.4b)

with 0 � j � imax − 1 and where u and T are given by the expansions (4.1) and v

from the continuity equation, v = −
∫ y

0
∂xu dy.

At this point, the method we are using is simply one of the numerous weighting
residual strategies which differ from each other only by the specific choice of the
weights wj . As pointed out in previous studies dealing with the isothermal case (see
Ruyer-Quil & Manneville 2000, 2002), it is not necessary to specify the weighting
residual method we are applying. Indeed, requiring equations (3.3) and (3.4) to be
satisfied everywhere – and not simply on average – and inserting into these equations
the expansions (4.1), (4.2), leads to the cancellation of two polynomials in the reduced
normal coordinate ŷ. Then, it can be proved by examining the order of magnitude with
respect to ε of each term in (3.3) and (3.4), that the number of independent conditions
on the unknowns ai and bi provided by the cancellation of these two polynomials
is equal to the number of the residuals (4.4) if imax is chosen large enough (Ruyer-
Quil & Manneville 2002). In this case, any choice of the weight functions would
lead to equivalent systems of equations and then to the same reduced model for the
dynamics of the flow. Nevertheless, it is important to emphasize that we are not simply
applying a numerical method. Our approach is rather to combine a classic averaging
method with a perturbation technique to the flat-film basic state (2.9) corresponding
to a0 =h2, b0 = −Bih/(1 + Bih), ai = bi = 0, i � 1. Terms of order higher than ε2 will
be neglected during the derivation process.

4.1. Formulation at first order

To illustrate our procedure, we give the formulation consistent at O(ε) with all
terms of higher order neglected. This is a helpful step for the choice of the simplest
methodology to use for the projection of the velocity and temperature fields onto the
amplitudes of the polynomials appearing at first order. Thus (3.3), (3.4) are simplified
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to

∂tu + u∂xu + v∂yu = ∂yyu + 1 − cotβ ∂xh + Γ ∂xxxh, (4.5a)

Pr(∂tT + u∂xT + v∂yT ) = ∂yyT . (4.5b)

This set of equations is completed by the continuity condition (3.2) and the boundary
conditions (2.3), (2.7), the integral version of the kinematic condition (4.3), the
continuity of the tangential stress at the surface (3.6) which truncated at O(ε) simply
reads

∂yu|h = −Ma∂x[T |h], (4.6)

and finally the heat balance at the interface

∂yT |h = −BiT |h. (4.7)

The residuals are now simplified to∫ h

0

wj (ŷ)[∂tu + u∂xu + v∂yu − ∂yyu]dy + h[−1 + cotβ ∂xh − Γ ∂xxxh]

∫ 1

0

wj (ŷ) dŷ = 0,

(4.8a)∫ h

0

wimax+j (ŷ)[Pr(∂tT + u∂xT + v∂yT ) − ∂yyT ]dy = 0, (4.8b)

where the contributions from surface tension effects have been kept. The amplitudes
ai and bi , i � 1, result from the slow space and time modulations of the free surface
so that they are at least first-order quantities in ε. Therefore, the space and time
derivatives of ai and bi , i � 1, are negligible. One then is led to a linear system for ai

and bi whose coefficients depend at most on a0, b0, h and with a right-hand side that
depends on h, a0, b0 and their derivatives:

2imax∑
j ′=1

αjj ′Aj ′ = βj (h, a0, b0, ∂x,th, ∂x,ta0, ∂x,tb0), 1 � j � 2imax, (4.9)

where Aj ≡ aj and Aimax+j ≡ bj , 1 � j � imax. Solving for the Aj leads to explicit
formulations of the amplitudes aj , bj as functions of a0, b0, h and their derivatives.
Thus, we obtain a set of three evolution equations for h, a0 and b0 modelling the
entire dynamics of the film flow.

As was pointed out above, inserting the expansions (4.1), (4.2) in (4.5) leads to the
cancellation of two polynomials in the reduced normal coordinate ŷ, say P(ŷ) and
Q(ŷ), corresponding to the momentum and heat equation, respectively. Because the
advection terms ∂tu + u∂xu + v∂yu and ∂tT + u∂xT + v∂yT are first-order quantities,
their truncation at O(ε) involves only the parabolic and linear profiles corresponding
to a0 and b0. Consequently, the advection terms are polynomials in ŷ of degree four
and three only. Therefore, the monomials of highest degree appearing in P(ŷ) and
Q(ŷ) originate from the terms ∂yyu and ∂yyT so that P(ŷ) and Q(ŷ) are of degree
imax − 1. Cancelling those two polynomials gives 2imax independent relationships, i.e.
the same as the number of residuals (4.8), so that they are equivalent systems of
equations leading to the same evolution equations for h, a0 and b0. Because each
different weighting residual technique only differs by its specific definitions for the
weighting functions wj , it is relevant to look for the best choice of wj that would
simplify the algebraic manipulations.

Let us first consider more specifically the residuals (4.8a). Because ∂tu+u∂xu+v∂yu

are first-order terms, the unknowns ai , bi , i � 1, may enter into their evaluation only
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through the integral
∫ h

0
wj∂yyu. Two integrations by parts give∫ h

0

wj

(y

h

)
∂yyu dy =

[
wj

(y

h

)
∂yu

]h

0
− 1

h

[
wj

′
(y

h

)
u
]h

0
+

1

h2

∫ h

0

wj
′′
(y

h

)
u dy.

(4.10)

As ∂yu|h given by equation (4.6) is proportional to ∂x[T |h], at first order it may only
involve h, a0 and b0. Making also use of the no-slip condition on the plate, u|0 = 0,

only three terms are left to consider, namely wj (0)∂yu|0, wj
′(1)u|h and

∫ h

0
wj

′′(y/h)u dy.
This suggests choosing w0 such that w0(0) = 0, w0

′(1) = 0 and w0
′′ a constant and to

introduce the flow rate q ≡
∫ h

0
u dy. This corresponds to the zeroth-order formulation

of the problem for the velocity:

∂yyu = −1, u|0 = 0, ∂yu|h = 0. (4.11)

Considering also the two integrations by parts performed in (4.10), such a similitude
is obviously related to the fact that the linear operator ∂yy is self-adjoint in the space
of functions satisfying the boundary conditions (4.11).

Now, it seems appropriate to link the amplitude of the parabolic profile a0 to the
flow rate, which is a physical quantity appearing explicitly in the integral form of the
kinematic condition (4.3). To introduce q explicitly into our expansion let us integrate
u(x, y, t) in (4.1) between 0 and h to obtain the expression

a0 = 3
q

h
− 3

2
a1 −

imax∑
i=2

3

i + 2
ai. (4.12)

Therefore, evaluating the residual (4.8a) corresponding to j = 0 with w0 ≡ f0 leads to

2

5
∂tq − 23

40

q

h
∂th − 18

35

q2

h2
∂xh +

111

280

q

h
∂xq +

q

h2

+
1

2
Ma∂x[T |h] +

1

3
h[−1 + cotβ ∂xh − Γ ∂xxxh] = 0, (4.13)

where the unknowns ai do not appear. Choosing the weight functions to be the test
functions themselves is the essence of the Galerkin method, which is equivalent to
a variational method – whenever a variational formulation is available (Finlayson
1972).

Turning to the weighted residuals for the heat equation (4.8b) and with the same
arguments, the unknowns ai , bi , i � 1, may only play a role through the integral∫ h

0
wj∂yyT∫ h

0

wj

(
y

h

)
∂yyT dy =

[
wj

(
y

h

)
∂yT

]h

0

− 1

h

[
wj

′
(

y

h

)
T

]h

0

+
1

h2

∫ h

0

wj
′′
(

y

h

)
T dy.

(4.14)
Making use of the boundary condition at the surface (4.7) and the constant temper-
ature distribution at the wall T |0 = 1 we obtain∫ h

0

wj

(
y

h

)
∂yyT dy = −Biwj (1)T |h − wj (0)∂yT |0

+
1

h
[wj

′(0) − wj
′(1)T |h] +

1

h2

∫ h

0

wj
′′
(

y

h

)
T dy. (4.15)
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Following exactly the same approach as before would lead to the choice for the
first weight function wimax

(0) = 0, w′
imax

(1) = 0 and setting w′′
imax

to a constant would

introduce the average temperature across the flow, (1/h)
∫ h

0
T dy. This choice would

obviously be problematic since the term wimax
(1)T |h would remain in (4.15) and in

(4.13) through the Marangoni effect. On the other hand, it is the exchanged heat
flux at the surface ∂yT |h, or the temperature at the surface T |h, which have physical
significance. Thus, because of its role in (4.13), we prefer to put the emphasis on
θ ≡ T |h by choosing wimax

(0) = 0, w′′
imax

= 0 so that wimax
∝ ŷ = g0. This choice has the

obvious advantage of dissociating the coupling term 1
2
Ma∂x[T |h] in (4.13) from the

definition of any other amplitudes needed to describe the temperature distribution.
It is therefore appropriate to replace the physically meaningless unknown b0 by θ

through the substitution

b0 = θ − 1 −
imax∑
i=1

bi. (4.16)

From the residual (4.8b) corresponding to wimax
≡ g0 = ŷ, we then obtain

Pr

[
1 − θ

3
∂th +

1

3
h∂tθ +

11

40
(1 − θ)∂xq +

9

20
q∂xθ

]
+

θ − 1

h
+ Bi θ = 0. (4.17)

Again, we find that the Galerkin method is the most effective one, requiring less
algebra.

Using now the equivalence ∂th = −∂xq given by the integral formulation of the
kinematic condition at the surface (4.3), a model consistent at O(ε) can be formulated
in terms of three coupled evolution equations for h, q and θ

∂th = −∂xq, (4.18a)

∂tq =
5

6
h − 5

2

q

h2
− 17

7

q

h
∂xq +

(
9

7

q2

h2
− 5

6
cot β h

)
∂xh − 5

4
Ma∂xθ +

5

6
Γ h∂xxxh,

(4.18b)

Pr∂tθ = 3
[1 − (1 + Bih)θ]

h2
+ Pr

[
7

40

(1 − θ)

h
∂xq − 27

20

q

h
∂xθ

]
. (4.18c)

The set of equations in (4.18) can be contrasted to the model derived by Kalliadasis
et al. (2003a) and Kalliadasis, Kiyashko & Demekhin (2003b). The functional form
of the first-order averaged heat equation (4.18c) is very similar to theirs (see the
two-dimensional formulation of equation (4) in Kalliadasis et al. 2003a), since for
the derivation of both equations, the temperature across the film is essentially a
self-similar linear profile with the weight function for the energy equations chosen
within the Galerkin framework, e.g. the first-order polynomial y/h. The two averaged
heat equations (4.18c) and equation (4) in Kalliadasis et al. (2003a) differ only
in the choice of the scaling for the temperature and the presence of the Prandtl
number in (4.18c) instead of the Péclet number in equation (4) in Kalliadasis et al.
(2003a). In fact, the two models really differ in the treatment of the momentum
equation. Equation (4.18b) contains the same terms with the corresponding averaged
momentum equation in Kalliadasis et al. (2003a , b) but with different coefficients.
Apart from some numerical factors due to different scalings (e.g. a factor three
appearing in equation (2a) in Kalliadasis et al. (2003a) due to a velocity scaling based
on the averaged velocity of the flat film), these modifications originate from a more
detailed description of the perturbed velocity field which is not limited in the present
approach to remain parabolic as in Kalliadasis et al. (2003a , b) – this parabolic profile
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is effectively the essence of the Shkadov IBL approach. The present approach for
the momentum equation is based on a Galerkin projection for the velocity field with
weight functions as the test functions themselves, unlike the Shkadov IBL treatment of
the momentum equation in Kalliadasis et al. (2003a , b) which is effectively a weighted
residuals approach using a single test function (the self-similar parabolic profile) and
a weight function equal to 1.

4.2. Formulation at second order

The aim now is to make our model consistent at second order also, i.e. accounting
for the ε2-order viscous and thermal diffusion terms of the boundary layer/energy
equations (3.3), (3.4). For this purpose, we require the solution of equation (4.9) for
the amplitudes of the projections,

a1 = −6

5
h∂x

[
q2

h

]
− h∂tq − Mah∂xθ, a2 = q∂xq +

1

2
h∂tq, (4.19a, b)

a3 = −3

4

q2

h
∂xh − 1

8
h∂tq, a4 = − 3

40
h6∂x

[
q2

h6

]
, (4.19c, d )

a5 =
1

80
h6∂x

[
q2

h6

]
, (4.19e)

b2 =
1

6
Prh ((θ − 1)∂xq + h∂tθ), b3 =

1

8
Prh (−(θ − 1)∂xq + 2q∂xθ), (4.19f, g)

b4 =
1

40
Prh ((θ − 1)∂xq − 3q∂xθ), (4.19h)

b1 = 0, ai = bj = 0, i � 6, j � 5.

Note that the amplitudes ai of the monomials of degree greater than or equal to seven
are identically equal to zero at first order. This can be shown by examining the degree
of the polynomial in ŷ corresponding to the left-hand side of (4.5a). Because f0 is of
degree two, this polynomial is of degree four, so that the right-hand side of (4.5a) is
also a polynomial of degree four. Hence, the amplitude an corresponding to fn = ŷn+1

is equal to zero if n � 6, with the operator ∂yy decreasing its degree by two. The same
argument can be applied to (4.5b) where the inertial terms ∂tT + u∂xT + v∂yT at the
left-hand-side are a polynomial in ŷ of degree three only.

Consequently, the derivatives of the fields ai , i � 6, bj , j � 5, are of order higher
than ε2 and can be dropped at this stage of the approximation. Their dynamics is
thus slaved to the dynamics of the other unknowns. From the expressions (4.19), we
can now obtain a4 = − 6a5, a2 = −4a3 + 40a5 and a1 = 8a3 − 96a5 − Mah∂xθ so that,
eliminating these amplitudes in (4.12) yields a0 = (3q)/h − 48

5
a3 + 816

7
a5 + 3

2
Mah∂xθ .

The velocity field at first order can then be written as

u = 3
q

h
f0(ŷ) + Mah∂xθf̃ 1(ŷ) + a3f̃ 3(ŷ) + a5f̃ 5(ŷ), (4.20)

where f̃ 1 = − 3
4
ŷ2+ 1

2
ŷ, f̃ 3 = ŷ4−4ŷ3+ 24

5
ŷ2− 8

5
ŷ and f̃ 5 = ŷ6−6ŷ5+40ŷ3− 408

7
ŷ2+ 144

7
ŷ.

Therefore, u is a combination of four independent fields q/h, a3, a5 and h∂xθ rather
than six as would be expected at first. Similarly, T can be written at first order as a
combination of four independent fields, namely θ , b2, b3 and b4. As a consequence, a
consistent formulation of a model for the dynamics of the flow at second order would
require nine unknowns corresponding to the introduction of eight independent fields
to correctly represent the temperature and velocity distributions, and of course the
film thickness h.
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Since the degree of the polynomials f̃ 1, f̃ 3, f̃ 5 is smaller than or equal to six, the
second-order dissipative term ∂yyu and the quadratic nonlinearities of the Navier–
Stokes equation imply that the description of the velocity field at O(ε2) involves
polynomials of degree up to ten. Therefore, the set of test functions for the velocity
field needs to be completed by six other functions in order to obtain a basis for
the set of polynomials of degree up to ten satisfying the Dirichlet condition at the
wall. Turning now to the modelling of the heat equation at second order, a basis
for the set of polynomials of degree up to nine satisfying the Dirichlet condition is
required to fully describe the temperature field at that order. This means that six
corresponding amplitudes for the velocity field and five for the temperature field
need to be eliminated (through a slaving principle) to obtain a set of eight evolution
equations for the eight unknowns required to correctly describe the dynamics of the
flow at second order (plus the conservation equation (4.3)). Needless to say, such a task
would require a cumbersome calculation and hence a short cut would be welcome.

Following the same approach as in the isothermal case, let us construct a new set

of polynomial test functions Fi satisfying the orthogonality condition
∫ 1

0
Fi Fjdŷ ∝ δij

with the help of a Gram–Schmidt orthogonalization procedure so that F0 ≡ f0, F1, F2

and F3 are linear combinations of f0, f̃ 1, f̃ 3 and f̃ 5. The result is

F0 = ŷ − 1

2
ŷ2, (4.21a)

F1 = ŷ − 17

6
ŷ2 +

7

3
ŷ3 − 7

12
ŷ4, (4.21b)

F2 = ŷ − 13

2
ŷ2 +

57

4
ŷ3 − 111

8
ŷ4 +

99

16
ŷ5 − 33

32
ŷ6, (4.21c)

F3 = ŷ − 531

62
ŷ2 +

2871

124
ŷ3 − 6369

248
ŷ4 +

29601

2480
ŷ5 − 9867

4960
ŷ6. (4.21d)

The functions F1 and F2 have been chosen so that they correspond exactly to the
polynomials introduced in the isothermal case. The introduction of the polynomial F3

is made necessary by the presence of the Marangoni effect which modifies the stress
condition at the interface (4.6).

Similarly, a set of orthogonal test functions for the temperature field is constructed
from linear combinations of g0, g2, g3 and g4 such that G0 ≡ g0:

G0 = ŷ, (4.22a)

G1 = ŷ − 5

3
ŷ3, (4.22b)

G2 = ŷ − 7ŷ3 +
32

5
ŷ4, (4.22c)

G3 = ŷ − 56

3
ŷ3 +

192

5
ŷ4 − 21ŷ5. (4.22d)

Therefore, the velocity field and the temperature field at O(ε) are given by

u =
3

h
(q − s1 − s2 − s3) F0(ŷ) + 45

s1

h
F1(ŷ) + 210

s2

h
F2(ŷ) + 434

s3

h
F3(ŷ), (4.23a)

T = 1 + (θ − 1 − t1 − t2 − t3)G0(ŷ) − 3

2
t1G1(ŷ) +

5

2
t2G2(ŷ) − 15

4
t3G3(ŷ). (4.23b)

In line with our previous derivation of a second-order consistent model for the
isothermal case (Ruyer-Quil & Manneville 2000), the first-order fields si , 1 � i � 3,

have been introduced so that u preserves the definition of the flow rate q , q =
∫ h

0
u dy,
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as it should. These fields correspond to corrections to the amplitude of the parabolic
velocity profile and at the same time their role in the velocity profile is similar to that
of q so that the final evolution equations for q and si will have similar functional
forms. In the same spirit, the introduction of the fields ti , 1 � i � 3, preserves the
definition of the temperature at the surface θ = T |y=h. Note that G0 and − 3

2
G1 are

Legendre polynomials. This is quite fortuitous as the Legendre polynomials form an

orthogonal basis with respect to the scalar product
∫ 1

−1
· dŷ instead of

∫ 1

0
· dŷ. To

complete our set of test functions in order to obtain a basis for the set of polynomials
of degree up to ten satisfying the no-slip condition, we now write

u =
3

h
(q − s1 − s2 − s3) F0(ŷ) + 45

s1

h
F1(ŷ) + 210

s2

h
F2(ŷ)

+
434

h

(
s3 −

9∑
i=4

si

)
F3(ŷ) +

9∑
i=4

1∫ 1

0

Fi(ŷ) dŷ

si

h
Fi(ŷ). (4.24)

As will be shown below, the explicit formulations of the polynomials Fi , 4 � i � 9, will
not be required so that in practice the Gram–Schmidt orthogonalization procedure is
limited to the determination of F1, F2 and F3.

We now apply a Galerkin projection. Let us consider in detail the first four
residuals for the momentum equation. Being of O(ε2) or higher, the corrective fields si ,
4 � i � 9, may contribute only through the evaluation of the zeroth-order viscous term∫ h

0
Fi(y/h)∂yyu dy, which after integrating twice by parts becomes

∫ h

0
F ′′

i (y/h)u dy.

Notice that F ′′
0 = −1, F ′′

1 = 14F0 − 17
3
, F ′′

2 = 1485
28

F1 + 909
28

F0 − 13 and F ′′
3 = 88803

868
F1 +

31779
868

F0 − 531
31

, are linear combinations of 1, F0 and F1. Consequently and making use
of the orthogonality of the polynomials Fi , the first four residuals of the momentum
equation Rq(Fi), 0 � i � 3, do not involve the second-order fields si , i � 4. After some
algebraic manipulations, they lead to a set of evolution equations for q , s1, s2, s3

which has the formal expression

∂tUq = Mq V q (4.25)

where Uq = (q , s1, s2, s3)
t , V q is a 20 × 1 vector whose components depend on h, q , θ ,

s1,2,3 and their space derivatives and Mq is a 4 × 20 matrix with constant coefficients.
The same argument applies to the temperature fields so that the set of test functions

Gi must be completed at second order with five polynomials of degree up to nine.
Nevertheless, since G′′

i , 0 � i � 3, are not linear combinations of Gi , 0 � i � 3, the first
four residuals do not form a closed set of equations for θ , t1, t2 and t3. Yet, a basis
for the set of polynomials of degree up to five satisfying the Dirichlet condition at
the wall can be obtained by introducing only one polynomial orthogonal to the first
four Gi . This polynomial G4 is given explicitly by

G4(ŷ) = ŷ − 128

15
ŷ2 + 24ŷ3 − 192

7
ŷ4 + 11ŷ5. (4.26)

The temperature field can now be written at second-order as

T = 1 + (θ − 1 − t1 − t2 − t3 − t4) G0(ŷ) − 3

2
t1G1(ŷ) +

5

2
t2G2(ŷ)

− 15

4

(
t3 −

8∑
i=5

ti

)
G3(ŷ) +

105

4
t4G4(ŷ) +

8∑
i=5

ti
Gi(ŷ)

Gi(1)
. (4.27)
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This formulation ensures that the evaluation of
∫ h

0
G′′

i (ŷ)T dy, 0 � i � 4 does not
require the definitions of Gi , i � 5. By applying next a Galerkin projection to the
heat equation, the first five residuals RT (Gi), 0 � i � 4, constitute a closed set. Since
the amplitude t4 is of O(ε2), its space and time derivatives can be neglected at this
order, so that an explicit formulation as function of h, θ , t1, t2 and t3 can be obtained,
thus expressing the slaving of the former to the latter. After some tedious algebraic
manipulations, one obtains a set of evolution equations for θ , t1, t2, t3 which can be
written formally as

Pr∂tUT = MT VT (4.28)

where UT = (θ , t1, t2, t3)
t , VT is a 21 × 1 vector whose components depend on h, q , θ ,

s1,2,3 and their space derivatives and MT is a 4 × 21 matrix with constant coefficients.
Hence we finally have a set of nine coupled evolution equations, namely (4.3), (4.25),
(4.28) for nine unknowns, given in Appendix A.

5. Reduced models
However, our full-size second-order model, derived from the systematic procedure

outlined in the previous section, is of little use because of its complexity. It is hence
necessary to obtain models of reduced dimensionality which also retain the dynamic
characteristics of the full-size model.

A significant reduction can be achieved by expanding our unknowns in series of ε

and performing an appropriate gradient expansion of the full-size model (4.3), (4.25),
(4.28), thus writing formally q = q (0) + q (1) + · · ·, θ = θ (0) + θ (1) + · · ·, si = s

(1)
i + s

(2)
i +

· · ·, ti = t
(1)
i + t

(2)
i + · · ·, where the superscript denotes the order of differentiation

with respect to x. At O(ε0), we recover the flat-film solution with q (0) = h3/3 and
θ (0) = 1/(1 + Bih). Inserting q = q (0) into the kinematic equation ∂th + ∂xq = 0 yields
a single evolution equation for the film thickness (Benney 1966). Because the heat
transfer and the mechanical equilibrium of the flat film are two decoupled problems
in this limit, this equation does not involve the Marangoni effect that appears at
first order through the terms Ma∂xθ in the system (4.25) – or the continuity of
the tangential stress (3.6). At O(ε), we obtain the first-order correction to the flow
rate,

q (1) =

(
2

15
h6 − cotβ

3
h3 + BiMa

h2

2(1 + Bih)2

)
∂xh, (5.1)

through the expansion of (4.25) and utilizing the expression for θ (0). Then, the
correction to the leading-order temperature field, θ (1) = BiPrh4∂xh(7Bih−15)/[120(1+
Bih)3], is similarly provided by the expansion of (4.28). Finally, the second-
order evolution equation for the free surface is

∂th + ∂x

(
q (0) + q (1) + q (2) +

Γ

3
h3∂xxxh

)
= 0, (5.2)

where the main contribution of the surface tension – through the corresponding
term of O(ε3) – has been kept since, as we have already pointed out, it is the only
term that prevents the waves from breaking. The expression for q (2) is obtained from
(4.25) without having to solve for the gradient expansion up to second order of the
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temperature-related fields θ and ti:

q (2) =

(
127

315
h9 − 8

15
cotβ h6 +

7

3
h3

+MaBih5 6(5Pr + 11) − 5Bi(2Pr − 15)h + Bi2(−7Pr + 9)h2

120(1 + Bih)4

)
(∂xh)2

+

(
4

63
h10 − 10

63
cotβ h7 + h4 + MaBih6 15Pr + 57 + Bi(−7Pr + 57)h

240(1 + Bih)3

)
∂xxh.

(5.3)

Since the derivation of the system of equations (4.25), (4.28) is coherent up to
O(ε2), so that no terms of O(ε2) or smaller have been omitted, the above gradient
expansion does agree exactly with the Benney expansion at O(ε2). The JDB equation
derived by Joo et al. (1991) is then recovered by simply neglecting the second-order
terms q (2) in (5.2).

However, as we have already pointed out in the Introduction, it is well known that
Benney-type evolution equations exhibit non-physical finite-time blow-up behaviour
when these equations are integrated in time and for sufficiently large Reynolds
numbers. Therefore, the aim here is to obtain a prototype set of equations of reduced
dimensionality without the drawbacks of Benney’s single evolution equation for the
film thickness in (5.2) and, hence, of higher degree of complexity than Benney’s
expansion. At the same time, it should be of lower degree of complexity than the
full-size system with nine unknowns in (4.3), (4.25), (4.28). This reduced model should
fully resolve conditions near criticality and hence not only correct all critical quantities
but also give the full long-wave lubrication equation with an appropriate expansion.
Finally, the reduced model should also capture the second-order dissipative effects
and hence it should accurately describe the dynamics of the film up to moderate
Reynolds and Péclet numbers.

For this purpose, we consider the projections for the velocity and temperature fields
given by (4.24) and (4.27). The corrective fields si and ti correspond to polynomials of
increasing degrees and, hence, they exhibit increasingly abrupt variations. Therefore,
viscosity and thermal diffusivity will tend to damp them. This can be shown for
example by linearizing the model equations around the flat-film solution assuming
no spatial dependence of the perturbations, i.e. set the wavenumber equal to zero.
With this hypothesis, dh/dt =0 and the film thickness is constant. Furthermore, both
systems (4.25) and (4.28) are decoupled and writing q =hN

3(1/3 + εq̃), si = εhN
3s̃i ,

θ =(1+ εθ̃ )/(1+BihN), ti = εt̃i with ε � 1, one obtains two linear systems in the form

Re
dV
dt

= A V , PrRe
dW
dt

= B W , (5.4)

where V = (q̃, s̃1, s̃2, s̃3)
t , W =(θ̃ , t̃1, t̃2, t̃3)

t and A and B are two square matrices of
dimensions 4 × 4. The eigenvalues of A and B are −63.6, −26.6, −7.42, −0.82 and
−89.1, −21.0, −7.40, −0.82, respectively. Therefore, there is a large gap between
the least stable (largest) eigenvalues and the other eigenvalues. The spectra are
hence well separated and the perturbations associated with the eigenvalues far from
zero are quickly damped. The dynamics of the flow in the limit of long waves is
therefore dominated by the eigenvectors corresponding to the eigenvalues closest to
zero. These are (q̃, s̃1, s̃2, s̃3)

t = (−1.00, 1.33 × 10−2, −1.38 × 10−4, 2.22 × 10−7)t and
(θ̃ , t̃1, t̃2, t̃3)

t = (0.976, −0.219, 8.08 × 10−3, 7.52 × 10−4)t . In both eigenvectors, the
coefficients corresponding to the corrections s̃i and t̃i are negligible except for t̃1,
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which is however four times smaller than the coefficient corresponding to θ̃ . It can
then be deduced that even if nine amplitudes h, q , θ , si and ti , 1 � i � 3, are needed
to describe the dynamics of the flow at second order, only q , h and θ will play
a significant role and the other ones will virtually be slaved to their dynamics, at
least for some range of Reynolds numbers. Therefore, it seems possible to develop a
reduced model in terms of h, q and θ that only reproduces reliably the dynamics of
the film up to moderate Reynolds and Péclet numbers.

Let us now consider the two residuals corresponding to the parabolic velocity profile,
Rq(F0), and to the linear temperature distribution, RT (G0). These two residuals do
not involve the fields si and ti directly but only their space and time derivatives,
except in products with derivatives of h or q . Therefore, the fields si and ti can be
eliminated at second order provided that explicit expressions for them as functions of
h, q and θ and their derivatives, are available at first order. Such relations can easily
be obtained by truncating at first order the eight evolution equations (4.25) and (4.28).
Solving a system of eight equations for six unknowns then leads to two compatibility
conditions which correspond to the first-order model (4.18). Thus, the expressions for
the fields si and ti as functions of h, q and θ are not unique and can be modified
with the help of the two compatibility conditions. Here, we will choose to express
the fields si and ti through the derivatives of h, q and θ only, so that we can obtain
reduced models whose first-order terms correspond to the first-order model (4.18).
The final expressions for the fields si and ti are given in Appendix B. Substituting
these expressions into the residuals of the momentum and heat equations, Rq(F0) and
RT (G0), corresponding to a parabolic and a linear weight, respectively, and making
use of the kinematic relation ∂th = −∂xq yields

∂tq =
5

6
h − 5

2

q

h2
− 17

7

q

h
∂xq +

(
9

7

q2

h2
− 5

6
cotβ h

)
∂xh

+ 4
q

h2
(∂xh)2 − 9

2h
∂xq∂xh − 6

q

h
∂x2h +

9

2
∂x2q

− 5

4
Ma∂xθ +

5

6
Γ h∂xxxh + Ineq[h, q, θ ] + MaMarq[h, q, θ ], (5.5a)

Pr∂tθ = 3
(1 − θ − Bihθ)

h2
+ Pr

[
7

40

(1 − θ)

h
∂xq − 27

20

q

h
∂xθ

]

+

(
1 − θ − 3

2
Bihθ

) (
∂xh

h

)2

+
∂xh∂xθ

h
+ (1 − θ)

∂x2h

h
+ ∂x2θ

+ Pr Ineqθ [h, q, θ ] + Pr2 Ineθ [h, q, θ ] + MaPr Marθ [h, q, θ ], (5.5b)

where hidden in Ineq , Marq , Ineqθ , Ineθ and Marθ , are the second-order inertial terms
induced by the corrections to the flat-film solution (B 1). Ineq contains terms of the
momentum equation produced by the advection of the first-order corrections of the
velocity profile (B 1a)–(B 1c). Marq denotes the terms of the momentum equation
associated with the Marangoni flow produced by the gradient of temperature at the
free surface. Similarly, Ineθ contains inertial terms originating from the averaged heat
equation through the advection of the first-order corrections of the temperature profile
(B 1d)–(B 1 ). The terms contained in Ineqθ and Marθ originate from the advection
of the linear flat-film temperature distribution by the first-order corrections of the
velocity profile induced by the deformation of the free surface and the Marangoni
flow, respectively.
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6. Regularized reduced model
Although the explicit formulations of Ineq , Ineqθ , Ineθ , Marq and Marθ are

complicated and involve time derivatives, they can be drastically simplified using
the relations provided by the zeroth-order flat-film solution (2.9)

q =
h3

3
+ O(ε) and θ =

1

1 + Bih
+ O(ε). (6.1)

Therefore, the second-order terms appearing in (5.5) do not have a unique formulation
since a large number of asymptotically equivalent expressions is possible by using
(6.1) (note, however, that the full-size second-order model given in Appendix A is
unique). Moreover, as already pointed out, the first-order expressions for the fields
si , ti as provided in (B 1) are not unique and can be modified with the help of the
two compatibility conditions given by the first-order model (4.18). Hence, we do not
end up with a single model fully compatible with the Benney long-wave expansion
up to second order (5.1)–(5.3) but with a whole family of such models. Nevertheless,
even if all of them are asymptotically equivalent, they might not necessarily behave
in the same way if the assumptions leading to their formulation are violated. Indeed,
the methodology presented here is based primarily on the assumption that inertia
plays effectively a ‘secondary’ role, with all inertial terms being at least first order in
the film parameter. Yet, in practical applications, both Reynolds and Péclet numbers
are in general large and a formulation that elucidates the way both H- and S-modes
interact in the high-Reynolds/Péclet-number flow regimes remains an open question.

In the context of isothermal film flows, the derivation of the Benney equation also
requires the assumption of a perturbative role for inertia. As a consequence and as
we have pointed out several times already, at sufficiently large Reynolds numbers, a
non-physical catastrophic behaviour of the non-stationary solutions leading to blow-
ups in finite time is observed. The occurrence of finite-time blow-ups has been shown
to be closely related to the disappearance of the single-hump solitary wave solutions
(Pumir et al. 1983). Ooshida’s regularization procedure of the Benney expansion on
the other hand leads to a single evolution equation for the free surface h that does
not exhibit this severe drawback (Ooshida 1999). Nevertheless, the Ooshida equation
fails to describe accurately the dynamics of the film at moderate Reynolds numbers
as its solitary wave solutions exhibit unrealistically small amplitudes and speeds.

Another single evolution equation including the second-order dissipation effects was
recently introduced by Panga & Balakotaiah (2003). The inertial terms appearing in
the model equations offered by both Ooshida (1999) and Panga & Balakotaiah (2003)
can be shown to be equivalent to each other by using the lowest-order expression
∂th = −h2∂xh provided by the flat-film solution (6.1) and the mass conservation
equation. Thus, Panga & Balakotaiah’s formulation can be modified such that its
inertial terms correspond to Ooshida’s equation. This simple procedure was shown
to cure the non-physical loss of the solitary wave solutions and thus to avoid the
occurrence of finite-time blow-ups (Ruyer-Quil & Manneville 2004).

In addition, Ooshida identified two regimes in the solitary wave solution branch.
The first one, the so-called drag–gravity regime, corresponds to the balance of the
gravitational acceleration with the viscous drag and with inertia playing only a
perturbative role. This regime is observable near the instability threshold or for
low-amplitude waves. The second one appears at larger Reynolds numbers and
corresponds to a noticeable jump in the speed and amplitude of the observed solitary
waves. In this drag–inertia regime, inertia plays a dominant role and therefore the
basic assumption of a perturbative role of inertia is clearly violated there. Yet, the
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construction of the solitary wave solutions of Ooshida’s equation proved that, even if
a quantitative agreement cannot be achieved in the drag-inertia regime using a single
evolution equation, a qualitative description of the wave dynamics is still possible.
Moreover, comparisons of the wave characteristics obtained using the boundary-
layer approximation or the Shkadov model with two evolution equations for h and
q are in good agreement even for large-amplitude waves (Chang, Demekhin &
Kopelevitch 1993). A similar study using a simplified second-order Galerkin model
corresponding to (4.3), (5.5a) with Ma =0 and Ineq =0 was shown to correctly
reproduce experimental wave shapes and speeds even up to moderate Reynolds
numbers, clearly in the drag–inertia regime (Ruyer-Quil & Manneville 2000).

Therefore, it seems possible to select at least one formulation of the reduced
second-order model having the form (4.3), (5.5) that will enable us to describe at
least qualitatively – and possibly quantitatively – the wave dynamics in the drag–
inertia regime. Two simple tests for the validity of the different models are: (i) the
linear stability of the basic flow solution and its comparison to the Orr–Sommerfeld
analysis of the linearized Navier–Stokes/energy equations, (ii) the construction of the
single-hump solitary wave family to ensure the existence of solitary waves for the
largest possible range of parameters thus preventing the occurrence of non-physical
blow-ups.

Consider now the averaged momentum equation (5.5a). The second-order inertial
terms Ineq and Marq must remain small compared to the first-order ones to ensure
convergence of the perturbation scheme. However, this might not be the case if the
Reynolds/Marangoni numbers are large enough since the order of the nonlinearities
contained in Ineq and Marq is high. A simple way to achieve the smallness of
Ineq and Marq compared to the first-order terms for the largest possible range of
parameters is to express the second-order terms in a form as close as possible to
the first-order ones. The first-order inertial terms of (5.5a) are ∂tq on the left-hand
side and − 17

7
(q/h)∂xq and 9

7
(q2/h2)∂xh on the right-hand side. Their coefficients are

uniform in space which suggests that inertia acts similarly everywhere on the plane. It
might not be so, however, since the velocity profile is modified by the thermocapillary
effect and the deformation of the interface. This then suggests postulating coefficients
that depend slowly on time and position, or more precisely on the local gradient of
the film thickness and local properties. Based on this consideration, we may define
a local reduced Reynolds number as q∂xh, which compares the local inertial time
t0q|∂xh|/h2 to the local relaxation time ν/(l20h

2). Notice that q∂xh has the sign of the
local slope ∂xh and therefore inertial corrections to the velocity profiles are assumed
to act differently at the front and the back of a propagating solitary hump. Let us
then consider a solitary hump in its frame of reference. With the wave moving faster
than the fluid, in the moving frame of reference the liquid flows from the right to the
left such that it goes upwards at the front of the wave and downwards at its back.
Second-order inertia effects tend to increase the transport of momentum to the crest
at the front of the wave, which is in favour of the instability, and decrease it at its
back. In the same spirit, let us define a local Marangoni number Ma∂xθ/h comparing
the local thermocapillary stress −dσ/dT |T0

(Tw − Ta)∂xθ/ l0 to the hydrostatic pressure
ρgl0h. The second-order inertial terms must therefore have the form

Ineq ∝ q∂xh

[
∂tq − 9

7

q2

h2
∂xh +

17

7

q

h
∂xq

]
, (6.2a)

Marq ∝ 1

h
∂xθ

[
∂tq − 9

7

q2

h2
∂xh +

17

7

q

h
∂xq

]
. (6.2b)
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To obtain the precise expressions for Ineq and Marq , we use an asymptotic argument
and compel the postulated expressions to agree with the expressions obtained by
substituting the first-order relations for the fields si and ti in the residuals Rq(F0) and
RT (G0) (see the analysis in the previous section):

Ineq =
1

210
h2∂ttq +

17

630
hq∂xtq − 1

105
q∂xh∂tq

+
1

42
h∂xq∂tq − 26

231

q2∂xh∂xq

h
+

653

8085
q(∂xq)2

+
386

8085
q2∂xxq +

104

2695

q3(∂xh)2

h2
− 78

2695

q3∂xxh

h
, (6.3a)

Marq =
5

112
q∂xh∂xθ +

19

336
h∂xq∂xθ +

1

48
h2∂xtθ +

15

224
hq∂xxθ. (6.3b)

Utilizing the zeroth-order equivalence (6.1), the right-hand side side of (6.3a) is

asymptotically equivalent to − 1
630

h7(∂xh)2 and ∂tq − 9
7

q2

h2 ∂xh + 17
7

q

h
∂xq to − 1

3
h4∂xh.

Therefore we obtain

Ineq =
1

70
q∂xh

(
∂tq − 9

7

q2

h2
∂xh +

17

7

q

h
∂xq

)
. (6.4)

Consider now the second-order terms Marq induced by the correction to the velocity
profile due to the Marangoni effect. It turns out that it is not possible to obtain an
expression in the form of (6.2b) which is asymptotically equivalent to the right-hand
side of (6.3b). This is due to the presence of the last two terms in (6.3b), 1

48
h2∂xtθ and

15
224

hq∂xxθ . Nevertheless, the expression

Marq =
5

56

1

h
∂xθ

(
∂tq − 9

7

q2

h2
∂xh +

17

7

q

h
∂xq

)
+

1

224
qh∂xxθ, (6.5)

is asymptotically equivalent to (6.3b). Note that although the last term of this
expression, 1

224
qh∂xxθ , cannot be eliminated – the remaining terms are of the form

suggested by (6.2b) – this term contains nonlinearities of smaller order than the
nonlinearities that can cause blow-up (Hocherman & Rosenau 1993; Bertozzi & Pugh
1998).

Other formulations have been tested and compared using both the linear and
nonlinear tests proposed above. In view of the results and considering the second-
order inertial and thermocapillary terms appearing in the averaged heat balance
(5.5b), Ineθ , Ineqθ and Marθ (induced by the deviations of the velocity and temperature
profiles from the flat-film Nusselt solution), it has not been possible to obtain for
these terms asymptotically equivalent formulations analogous to (6.4) and (6.5), if
the temperature field is assumed to be slaved to the free-surface temperature θ only.
This failure suggests describing the temperature field by allowing at least the first
correction t1 to θ to have its own dynamics. Such an approach, however, is beyond
the scope of the present study and will be presented in a future paper. Therefore,
Ineqθ , Ineθ and Marθ will all be set equal to zero. This assumption is still consistent
with the gradient expansion at second order since the interfacial temperature is
only coupled to the local flow rate through its gradient (already of O(ε)). Yet,
Ineq and Marq do contribute to q (2) and should be kept. The final proposed model
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therefore is

∂th = −∂xq, (6.6a)

∂tq =
9

7

q2

h2
∂xh − 17

7

q

h
∂xq

+

{
5

6
h − 5

2

q

h2
+ 4

q

h2
(∂xh)2 − 9

2h
∂xq∂xh − 6

q

h
∂xxh +

9

2
∂xxq

− 5

6
cotβ h∂xh +

5

6
Γ h∂xxxh − Ma

(
5

4
∂xθ − 1

224
hq∂xxθ

)}

×
(

1 − 1

70
q∂xh + Ma

5

56h
∂xθ

)−1

, (6.6b)

Pr∂tθ = 3
(1 − θ − Bihθ)

h2
+ Pr

[
7

40

(1 − θ)

h
∂xq − 27

20

q

h
∂xθ

]

+

(
1 − θ − 3

2
Bihθ

) (
∂xh

h

)2

+
∂xh∂xθ

h
+ (1 − θ)

∂x2h

h
+ ∂xxθ. (6.6c)

We shall refer to this as the reduced regularized model since it ensures the smallness
of Ineq and Marq compared to the corresponding first-order terms, thus avoiding
unrealistic blow-up behaviour. In Part 2 we shall demonstrate that this model satisfies
the linear and nonlinear criteria and, as expected, its gradient expansion leads to the
free-surface equation (5.2) where the expressions (5.1) and (5.3) for q (1) and q (2) are
exactly recovered.

7. Conclusion
We have considered the dynamics of a thin film falling down a uniformly heated

plane. A systematic methodology for the derivation of a set of nonlinear partial
differential equations that describe the evolution of the film was developed. This
methodology is a combination of the classical long-wave theory with polynomial
expansions for the velocity and temperature fields followed by a weighted residuals
approach.

The large dimensionality of the set of equations that describe the evolution of the
film (nine for the full-size second-order model), necessitated the development of a
procedure for the reduction of its dimension. This led to a family of (three-equation)
models compatible with the classical gradient expansion up to second order. One
of these models, referred to as the ‘regularized reduced model’, was obtained by
postulating that the formulation of the second-order inertial terms should remain
as close as possible to the first-order ones. This procedure effectively regularizes the
second-order terms as it ensures that these terms are well-behaved for the largest
possible range of parameters. Different formulations of the second-order inertial
terms have also been tried (not shown). The regularized reduced model (6.6) offers
the best comparisons with the Orr–Sommerfeld analysis and its one-humped solitary
wave solutions exist for all Reynolds numbers, as will be demonstrated in Part 2.

Our procedure, based on a gradient expansion combined with a Galerkin projection
with polynomial test functions, was made possible by the simple zeroth-order solution
(2.8) which corresponds precisely to polynomial velocity and temperature profiles.
These features can also be found in the case of flow in Hele-Shaw cells of thin
gaps (Ruyer-Quil 2001). Similar favourable circumstances are quite rare. Yet, because
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other geometries can be connected to the ‘flat-film case’ with the help of appropriate
expansions, we believe that the procedure outlined here can be successfully applied
to obtain low-dimensional models in other situations. These might include thin films
in the presence of surfactants (Shkadov, Velarde & Shkadova 2004) and chemical
reactions (Trevelyan & Kalliadasis 2004a , b).
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Appendix A. Full-size second-order model

∂tq =
30

31
h − 90

31

q

h2
− 1050

31

s1

h2
− 3690

31

s2

h2
− 9066

31

s3

h2
− 12

5

q∂xq

h
+

6

5

q2∂xh

h2

− 30

31
cotβ h∂xh − 213

248
Ma∂xθ +

1569

248

q(∂xh)2

h2
− 12

5

qs1∂xh

h2
− 4248

2015

qs2∂xh

h2

− 5296

3875

qs3∂xh

h2
− 1569

248

∂xh∂xq

h
+

12

5

s1∂xq

h
+

1026

403

s2∂xq

h
+

11722

3875

s3∂xq

h

+
12

5

q∂xs1

h
+

4626

2015

q∂xs2

h
+

1538

775

q∂xs3

h
+

1069

248
∂xxq − 2847

496

q∂xxh

h
+

30

31
Γ h∂xxxh,

(A 1a)

∂t s1 =
1

10
h − 3

10

q

h2
− 126

5

s1

h2
− 126

5

s2

h2
− 126

5

s3

h2
+

1

35

q∂xq

h
− 3

35

q2∂xh

h2

− 1

10
cot β h∂xh +

3

8
Ma∂xθ +

93

40

q(∂xh)2

h2
+

108

55

qs1∂xh

h2
− 5022

5005

qs2∂xh

h2

+
6

35

qs3∂xh

h2
− 69

40

∂xh∂xq

h
− 103

55

s1∂xq

h
+

9657

5005

s2∂xq

h
− 1

35

s3∂xq

h
− 39

55

q∂xs1

h

+
10557

10010

q∂xs2

h
+

19

70

q∂xs3

h
− 9

40
∂xxq +

21

80

q∂xxh

h
+

1

10
Γ h∂xxxh, (A 1b)

∂t s2 =
13

420
h − 13

140

q

h2
− 39

5

s1

h2
− 11817

140

s2

h2
− 11817

140

s3

h2
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cotβ h∂xh − 13

64
Ma∂xθ

−3211

4480

q(∂xh)2

h2
− 4
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qs1∂xh

h2
+
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qs2∂xh

h2
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qs3∂xh

h2
+

2613

4480
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− 2
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s1∂xq

h
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s2∂xq

h
+
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s3∂xq

h
+

6

55

q∂xs1

h
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385

q∂xs2

h
+
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q∂xs3

h

+
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2240
∂xxq − 2847
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h
+
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420
Γ h∂xxxh, (A 1c)

∂t s3 =
3

868
h − 9

868

q

h2
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31

s1

h2
− 8181
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s2

h2
− 158709

868

s3

h2
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cotβ h∂xh

+
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Ma∂xθ +

3
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Γ h∂xxxh +
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27776

q(∂xh)2
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2015
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+
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qs3∂xh
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− 19023

27776

∂xh∂xq

h
− 171
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s2∂xq

h
− 9358

3875

s3∂xq

h
+
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2821

q∂xs2

h
− 13653

10850

q∂xs3

h
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17517

55552

q∂xxh

h
, (A 1d)

Pr∂tθ =
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h2
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t2
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Appendix B. First-order corrections to the parabolic velocity profile and linear
temperature distribution

s1 =
1
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h2∂tq − 19
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5
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h(θ − 1)∂xq +

79

11200
hq∂xθ

)
, (B 1e)

t3 = Pr

(
1

3150
h(θ − 1)∂xq − 1

1050
hq∂xθ

)
. (B 1f )
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